zum Inhalt springen

ERC Advanced Grant No. 669666 “INFANT EARTH”

The Making of the Earth – Reading the Geochemical Code from Meteorites and the Earth’s Oldest Rocks

Figure: Concept and the three principal methodological approaches of INFANT EARTH.

Proposal summary

It is still an open question how Earth became the rocky habitable planet as we know it today. This is because there is a significant time gap of several 100 million years between Earth’s oldest rock archives (ca. 4 billion years old) and most extraterrestrial samples like meteorites that archive the birth of our solar system ca. 4.5 billion years ago. Within this time gap, three key processes that shaped our planet took place, i.e., Earth’s growth via asteroidal collisions, formation of the metal core and a first solid crust, and the delivery of volatiles such as water. Because rock samples are lacking, these fundamental processes have to be traced indirectly, by using highly sophisticated geochemical tools like isotope or trace element compositions of younger rocks or meteorites.
this project aims on better unravelling Earth’s earliest history and better identifying its building blocks, by combining the geochemical record locked in Earth`s oldest rocks and extraterrestrial samples. The key focus of “Infant Earth” is the development of new geochemical techniques that are way beyond the current state of art. The methodology of “Infant Earth” covers three linked approaches, namely high precision analyses of (i) nucleosynthetic isotope anomalies, (ii) radiogenic isotope and (iii) trace element measurements. To better constrain the history of volatile delivery to the nascent Earth, a focus is on comparing the geochemical record provided by refractory and volatile elements. In their synergy, the results will provide a major step forward in unravelling Earth’s earliest history.
INFANT EARTH builds on existing research strengths of the geochemistry/cosmochemistry group at UoC, where a scientifically broad pool of collaborating scientists and state of the art analytical equipment are available. We have also acquired a nearly unique collection of Earth’s oldest rock samples and of extraterrestrial samples supplied from institutions such as NASA or collaborating museums.